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Abstract 

Experiments on real physical systems play a major role in engineering 
disciplines. Traditionally, the use of real physical systems requires a students' 
physical presence in the laboratory. We have developed the RemoteLab tele-
laboratory environment, which allows students to remotely conduct physical 
experiments via the Web, creating a reliable integrated virtual and real 
laboratory education environment. 

The main challenge in such a situation comes from the fact that students interact 
with non-fail-safe laboratory equipment without on-site human supervision. Our 
solution uses the online-replacement mechanisms in the previously developed 
Simplex system. Simplex is based on the concept of analytic redundancy and 
provides a “supervisor” for experimental, student-supplied controllers in form 
of an ultra-reliable safety controller, which eventually takes over control of the 
experiment. 

Within this paper, we describe a RemoteLab-experiment where a robot is 
controlled by a joystick via a CORBA event channel and the Simplex system. The 
actual experiment has been carried out in a distributed fashion between the 
authors’ universities. Within this context, the paper reports on the extension of 
the fault-tolerant real-time Simplex control system with open, CORBA-based 
interfaces.  

Key words: RemoteLab, tele-education, real-time control systems, online 
component replacement, CORBA 

1 Introduction 

Tele-teaching is a modern education model, which extends the traditional face-to-face 
apprenticeships by using electronic networks, to provide a powerful context for learning in 
education courses. During the last years, several sites deployed tele-teaching environments for 
various purposes, with different goals, using different technologies.  
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The DIANA project at Humboldt University has established a synchronous tele-teaching 
environment used for transmitting lectures from the Computer Science department to 
Humboldt University's main campus in Berlin's city center over a distance of 25 km. This 
Giga-bit tele-teaching link is currently extended to include the Technical University in 
Munich. The DIANA project focuses on reliable audio and video transmission using stream-
based communication (CORBA Audio/Video streams), it employs a CORBA-based platform 
for device control (tele-teaching equipment). In context of DIANA we have developed the 
RemoteLab tele-laboratory environment, which allows students to remotely conduct physical 
experiments via the Web, creating a reliable integrated virtual and real laboratory education 
environment. 

In a traditional laboratory environment, several mechanisms, i.e. switches, which have to be 
pushed to make a device operable, ensure the safety of non-failsafe equipment. These 
mechanisms are not applicable in a remote laboratory environment. However, fault-tolerance 
regarding faulty behaving controllers is crucial for the safety of the equipment. In our system 
we use analytic redundancy, introduced first with the Simplex architecture [Sha96], to 
circumvent this problem. 

Our RemoteLab scenario is not restricted to the education domain only. The technology used 
in this environment is equally well applicable to other scenarios, such as manufacturing, tele-
repair or tele-monitoring. 

The remainder of this paper is organized as follows: Section 2 describes the tele-laboratory. 
Section 3 gives an overview on the underlying principles. Section 4 extends our current 
scenario by introducing a CORBA-based framework for component replacement. Section 5 
presents related work and Section 6 concludes the paper. 

2 A Tele-Laboratory Environment 

Experimentation with real physical systems is a key part in education. Our RemoteLab tele-
laboratory project allows students to remotely conduct physical experiments via the Web 
easily and reliably, creating an integrated virtual and real laboratory education environment. 
The tele-laboratory is based on Simplex technology, which is described in some detail in 
Section 3. The novelty of our project lies in: 

1. The use of real experiments in addition to simulation and animation without being 
physically at the laboratory. This is achieved through the real-time, fault-tolerant 
control architecture based on Simplex principles, which guarantees stable 
performance while allowing users to download and test their control modules. 

2. Horizontal integration across engineering disciplines. Our tele-laboratory is 
developed with a common interface allowing students from different disciplines to 
gain practical experience with a variety of control and distributed computing 
problems and devices. 

3. Integration with standard tools for controller development. Our laboratory software 
has interfaces to off-the-shelf tools used by control engineers today, such as  
Matlab+Simulink. 

In an instructional situation it is likely that the user-supplied controllers will malfunction, 
possibly in dangerous ways. Therefore, it is necessary to take precautions to protect non-fail-
safe laboratory equipment. Simplex provides this protection using the technique of analytic 
redundancy, and can detect and replace a malfunctioning controller with the predefined safety 
controller to keep the equipment safe and in working order.  



With the Java-based lab applet, the user-visible portion of the tele-laboratory, the student is 
given feedback as to the state of their controller (running, failed), as well as the system states 
that led to the termination of their controller in the case of failure. In addition, the student is 
provided with a video stream of the physical device and graphs of its status. Facilities are also 

in place for the 
controller to transmit 
debugging information 
output during a run 
back to the student 
after execution com-
pletes (so as to not 
interfere with the real-
time requirements of 
the student controller). 

The scenario depicted 
in Figure 1 shows an 
experiment, where a 
Khepera robot [K-

Team95] is driven by an interactive user’s commands entered via a force-feedback joystick. 
The joystick commands are transmitted to the robot via a CORBA event channel, the user-
supplied (“highperformance”) controller and the CORBA-enhanced version of Simplex. The 
robot has a limited, imprecise position tracking system, which supplies data to the user-
supplied  controller, which in turn sends feedback to the joystick.  

The independent safety controller is connected to a rectangle of light barriers, which enable it 
to judge whether the user-supplied controller is moving the robot out of the safety region (i.e. 
the table). In this case, the Simplex online-replacement mechanism transfers control of the 
robot solely to the safety controller and terminates the user-supplied controller. The Simplex 
replacement manager is accessible via a CORBA interface. Using the lab applet, the user may 
request the compilation of his controller code by communicating with the Simplex 
compilation manager, which has an interface to the C compiler and coordinates its tasks with 
the replacement manager.  

After successful compilation the user can request insertion of the controller into the active 
Simplex system. Simplex then executes the controller and provides status information about 
the execution, which are presented to the user by the lab applet together with the video 
feedback.  

3 Underlying Principles: The Simplex Architecture 

The Simplex architecture [Sha96] has been developed for automatic control applications to 
support safe and reliable online upgrade of software components in spite of errors in new 
modules. This is important when introducing new control technologies into running systems. 

To mitigate the risks in a control system upgrade, Simplex has been designed to tolerate 
timing faults such as overrun, programming system faults such as illegal addressing, and 
semantic faults due to modeling, algorithm design or implementation errors. Simplex handles 
timing faults and programming system faults by temporal and spatial encapsulations. 
Software semantic faults are handled by the use of analytic redundancy.  

The basic building block of Simplex Architecture (see [Sha96]) is a replacement unit. A 
replacement unit is simply a process with a given communication template. Replacement 
units are organized into application units. An application unit typically has communication 
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Figure 1: Tele-laboratory scenario 



and process management modules, and at least one replacement unit that implements the 
application functions.  If the system is safety critical, a separate safety unit is needed. The 
safety unit is responsible for reliable operation and operation monitoring.  

Simplex uses forward error recovery for 
semantic faults in control applications. 
System states reached by the experimental 
controller must stay within the stability 
envelope of the safety controller. 
Intuitively, this is similar to a student 
pilot’s flight test. The trainer will let the 
student pilot fly, even making some minor 
mistakes, as long as the plane remains in a 
state that is controllable by the trainer. 
The safety controller is designed to have a 
large stability envelope at the cost of 
performance whereas the experimental 
controller is designed to maximize the 
performance. They have different designs but analytically related design objectives.  

The experimental controller is encapsulated in a replacement unit and can be replaced during 
runtime. The replacement of a component is not a real-time operation. However, once the 
component takes over the control, the computation and communication involving the 
component are hard real-time operations. Simplex uses POSIX.21 real-time message queues 
for communication among controllers, however, it provides CORBA interfaces to the 
replacement procedure. 

4 A CORBA-based Framework for Component Replacement 

Within context of Simplex, analytic redundancy and online-replacement have been proven as 
viable concepts for the construction of reliable dynamic real-time software systems. However, 
programming for the Simplex system requires adherence to a number of coding conventions. 
In order to support dynamic replacement, Simplex components (replacement units) have to 
support certain interaction patterns, which are expressed in actual component code, rather 
than in an interface definition language.  

Introduction of CORBA IDL would significantly simplify programming of Simplex 
replacement units. However, since CORBA interactions have varying, unpredictable 
communication latency, some measures have to be taken to ensure Simplex’ real-time 
behavior. Since the component replacement operation in Simplex is not a real-time operation, 
it can be easily replaced by a CORBA-based service to achieve a higher degree of flexibility 
and improved portability.  

The open question is, how to interface the real-time operations with CORBA. There exist a 
number of object request broker implementations with real-time extensions, such as the TAO 
ORB. In certain system configurations, where a hard real-time control loop is statically 
distributed over several nodes, the RT-CORBA implementations with their specific 
communication protocols show great advantages over proprietary solutions. However, in 
systems, where the hard real-time loop is not distributed, such as in the tele-lab (see Section 
2), it is sufficient if middleware provides a distributed multimedia user interface to the system 
and supports component management with soft real-time characteristics.  

In case of our tele-lab scenario, the non-distributed nature of the real-time control loop does 
not require the use of RT-CORBA. The challenge in our case is the integration of standard 
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CORBA with a proprietary real-time system. We introduce the notion of a “Composite 
System” to solve the problem. 

Within the Composite System, components’ interfaces are described using CORBA’s 
interface definition language IDL. The construction of new replacement units is simplified. 
Additionally, many standard CORBA services (COS – common object services), such as 
naming service, event service, or domain specific services, can now easily be used from 
within the replacement units. On the other hand, we retain the real-time publication and 
subscription service of Simplex to ensure the timing predictability for safety controller and 
decision unit, Simplex’s most vital components. Thus, we use Simplex’s inherent concept of 
analytical redundancy to tolerate CORBA’s unpredictable timing behavior. 

To interface the real-time operations with CORBA we use a previously developed concept 
called “Composite Objects” [Polze98]. Composite objects allow the programmer to make an 
explicit tradeoff between an application's predictable resource utilization and its 
communication latency.  

Composite objects consist of a real-time part and a non-real-time part. Design time and run-
time guarantees can be given for execution of real-time methods. In contrast, methods in the 
non-real-time part are executed following a best-effort approach. Data replication and a 
weakly consistent memory management protocol  (implemented via interprocess 
communication – such as POSIX message queues) are used to decouple real-time and non-
real-time processing.  

A composite object establishes a timing firewall [Polze97] between the real-time and non-
real-time (CORBA) computing part, so that the non-real-time part cannot violate the real-time 
scheduling rules that are needed by the real-time part [Sha94]. Implementation details on 
Composite Objects and timing firewalls using a scheduling server can be found in [Polze97] 
and [Polze98]. 

In our approach towards a CORBA-based version of Simplex, we implement decision unit 
and safety controller inside the real-time part of composite objects. We use the real-time 
publisher/subscriber protocol for communication between safety and decision unit. This way 
we can ensure predictable timing behavior for interactions between these two essential 
components. 

As in the original Simplex system, the safety unit implements the basic version of the desired 
service. Additional, more sophisticated and complex versions of a service now can be 
implemented as CORBA components. These components are described by their interfaces 
given in CORBA IDL. Multiple versions of the CORBA service implementations correspond 
to Simplex’s replacement units and inside the decision unit Simplex’s concept of analytic 
redundancy is used to judge a components output.  

Since CORBA communication is location-transparent, we can now distribute the Simplex 
system in a heterogeneous environment. Simplex’s predictable timing behavior is preserved 
as long as safety unit and decision unit are co-located on a real-time operating system (as in 
the original Simplex system). 

5 Related Work 

Real-time and fault-tolerant CORBA 

The idea of providing fault tolerance as an additional feature to CORBA implementations has 
been the focus for several research activities within the last years. With the request for 



proposal for a Fault tolerant CORBA Using Entity Redundancy [OMG98a] issued in April 
1998, OMG is seeking to incorporate existing approaches for software fault tolerance into 
future versions of CORBA. However, most related work, i.e. [Morgan99], [Felber98], 
[Chang97], [Maffeis94], implements fault-tolerant behavior based on redundant execution 
and fault-masking without taking real-time constraints into account, a property absolutely 
needed for ensuring the safety of the devices in a tele-laboratory. While the OMG has 
founded a Real-time CORBA special interest group (SIG), which has been soliciting 
technology for a Real-time Object Request Broker (ORB) comprising: fixed priority 
scheduling, control over ORB resources for end-to-end predictability, and flexible 
communications [OMG99], the integration of fault-tolerance techniques with real-time 
computing is currently not under consideration in the OMG standardization process. 

TAO is an innovative work on RT-CORBA where fixed priority real-time scheduling is 
tightly integrated into the system [Schmidt98] [Schmidt99]. Main goal of this work is to 
provide end-to-end quality-of-service qualities for CORBA-based applications. A list of 
requirements for Object Request Broker implementations is presented, among them are 
resource reservation protocols, optimized real-time communication protocols and a real-time 
object adapter.  

Work at the University of Rhode Island and the MITRE Corporations deals with syntactical 
extensions to CORBA IDL to express timing constraints [Squadrito98] [Thuraisingham96]. 
“Timed distributed method invocations” are identified as one necessary feature in a real-time 
distributed computing environment. The “Affected Set Priority Ceiling Protocol” as a 
combination of semantic locking and priority ceiling has been proposed for concurrency 
control in real-time object-oriented systems. 

Tele-Education 

Tele-teaching environments are being used by several organizations. They differ in they way 
teacher and student access the material and how interaction between teacher and students 
happens. In an asynchronous environment, teachers and students prepare and access the 
material, such as audio-visual recordings of  lectures or multimedia learning programs, at 
different times. Interactions between lecturer and students happen asynchronous via electronic 
mail or synchronous via telephone or video conferences. Known examples for asynchronous 
tele-teaching environments among others are DIALECT [Apostolopoulos96] and West 
[McLoughlin96]. Telepoly [Walter97] is a synchronous environment. Telepoly connects 
several classrooms to a virtual classroom constructing an interactive and synchronous 
distance learning environment. 

While various sites deployed distance learning environments, only a few support remote 
training and laboratories. SimulNet  [Llamas98] is a distributed remote access computer based 
training system, which provides a virtual laboratory enabling students to train theoretical 
knowledge in practice. This is done by delivering software through the Internet which can be 
run on any computer. These distributed applications are simulators of tools which can be 
found in a conventional laboratory. The main difference to our RemoteLab environment is the 
use of simulators. While our architecture allows students to experiment with real devices, 
SimulNet provides only simulators. 

6 Conclusions 

We have presented the RemoteLab tele-laboratory application, which enables students from 
remote locations to design, compile, and run their controllers using (possibly expensive) 
laboratory equipment in a predictable, reliable fashion. The main challenge in such a situation 



comes from the fact that students interact with non-fail-safe laboratory equipment without on-
site human supervision. 

Our solution uses the online-replacement mechanisms in the previously developed Simplex 
system. Simplex is based on the concept of analytic redundancy and provides a “supervisor” 
for the student-supplied controllers in form of an ultra-reliable safety controller, which 
eventually takes over control of the experiment.  

We have extended Simplex’ replacement manager with CORBA interfaces, allowing 
installation and execution of new controllers to be triggered remotely. Furthermore, we have 
developed a Java-based lab applet which has been successfully used to conduct remote 
experiments. Within this paper, we have described an experiment where a robot is controlled 
from a joystick via a CORBA event channel and the Simplex system. We have run this 
experiment distributed between University of Illinois, Urbana-Champaign and Humboldt-
University of Berlin, Germany. In this case, a remote user has accessed the robot in our Berlin 
lab. 

In order to be usable in our system, controllers currently need to adhere to a number of design 
rules and a Simplex-specific interaction protocol. Future work will focus on modifications to 
the Simplex architecture to support execution of purely CORBA-based controllers in our 
environment. 
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